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antiferromagnetic Heisenberg model of S = 3 on a 
square lattice 

Ruibao Tao 
T D Lee Physics Laboratory of Fudan University and Department of Physics, Fudan 
University. Shanghai 200433, People’s Republic of China 
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AbstracL An application of the method developed in OUI previous papers to a two-dimensional 
isotropic Heisenberg antiferromagnet of S = 5 on a square lanice is presented. A selfconsistent 
independent spin-wave representation (sctsua) is proposed in which we have performed the 
renormalization from both the dynamic and kinematics interaction and calculated the corrections 
from the correlation of the nearest-neighbour and next-nearest-neighbour sites. An anisotropy 
spin-wave excitation energy in unrestricted space is found self-consistently and has a gap. The 
difficulty of divergence of higher-order terms in usual spin-wave theory seems to have been 
overcome. Our calculation shows (he ground-state energy E a -0.659NJ. 

The spin-wave theory (SWT) has a long history and has worked well for three-dimensional 
magnetic systems. In the lower-dimensional case, the Mermin-Wagner theorem has 
prohibited any long-range magnetic order at finite temperature for isotropic magnetic 
Heisenberg systems. The usual swT has met serious difficulty for low-dimensional systems 
due to the divergence in the higher-order corrections. The two-dimensional ( 2 ~ )  Heisenberg 
model has attracted considerable attention in recent years, perhaps due to the discovery of 
high-temperature superconductivity in some doped oxide compounds which is thought to be 
an S = f antiferromagnet at zero doping, and has been shown to be evidence of long-range 
antiferromagnetic correlation at low temperatures. Many methods have been proposed [ 1- 
IO] to deal with the S = f isotropic antiferromagnetic Heisenberg model (AFHM) on a 2D 
square lattice. From a different theoretical scheme based on the slave boson of RVB 181 or 
the Schwinger boson [9 ] ,  one can obtain different results. The numerical calculations [ 1 6 ]  
have supported the existence of long-range order at zero temperature and Green-function 
Monte Carlo [5 ]  (size: 12 x 12) and projection Monte Carlo studies [6] (size: 32 x 32) 
give the ground-state energy as E % -0.6692NJ and -0.6698NJ. Although free spin- 
wave approximation can work well in this case, the usual SWT 11 1,121 has a divergence 
problem in the higher-order approximation even for the ground state of a 2D square lattice 
with long-range order. Takahashi [lo] proposed a variation method, the ‘modified S W ’ ,  
in which the Mermin-Wagner theorem is treated as a constraint condition ((q) = 0). It 
seems to show how to apply the SWT to a low-dimensional isotropic ‘quantum magnetic 
system. Unfortunately, although their trick works well at finite temperature, we believe that 
it may not work at zero temperature, since the magnetization of sublattice (Y) is not zero 
and, therefore, the constraint (S = 0) in their paper will fail. In this paper, we will apply 
a complete Bose transformation [I35141 to the 2D AFHM and give the calculation for the 
ground-state energy. 
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The Hamiltonian of the AFHM we will consider is 

where J2 and Jxr are positive and equal to J for an isotropic system. An AFHM square 
lattice can be divided into two sublattices F and G. In usual SW sublattices, one maps the 
spin operators into Bose operators by means of Holstein-Primakoff [ 151 or Dyson-Maleev 
[ 16,171 transformations. However, the transformations only keep the commutations but 
not the physical space, so one must consider how to estimate such an additional kinematics 
interaction. The physical space of the boson representation must be restricted in proper space 
where the maximum number of spin excitations must not exceed 2s + 1 since the number 
of eigenstates of S: is 2s + 1. This is a physical constraint of the spin wave described 
by boson excitation. In this paper, some projection operators have been introduced to keep 
this Bose transformation constraint. 

Following [ 13,141, we define a projection operator for each site from the definition 
of the step function B ( x ) .  The projection operators were proved CO have the following 
representation [ 13,141: 

m 

e; = e(2s - aiai) = B,u;'u', i E F. G (2) 
I=O 

where Bo = 1, 81 = O  (1 = 1, ... 2s) and 

( - l ) = y l -  I)! 
(2S)!I!(l  - 2s - I)! 

E,  = I ) 2 S + l .  (3) 

In the case of S = 4, we have BI = (-1)'-'(1 - l)/1! for 1 2 0. In this paper, we will 
only study the case where S = i. It is easy to extend the formalism to the general case. 

For an antiferromagnetic system on a square lattice, the local Bose transformation is 

The operators (a,  ut, b, bt) satisfy the well known boson commutation. 
Substituting expansion (2) of 0 into (4)-(7), we obtain 
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The transformation of Si is the conjugate of equation (8). We can also find the 
transformation for the sublattices G similarly. 

For a system with N sites, we define a total projection operator P which projects any 
vector of state into the following physical proper space of N sites: 

The constraint on the spin-wave excitation in the transformation has been included 
automatically. The transformed Heisenberg antiferromagnetic Hamiltonian is 

In [I41 i t  was proved that the following model Hamiltonian H has the same eigenvalues 
as A: 

where the operator S). S; is defined by equations (5) and (7). First, we will find a self- 
consistent independent spin-wave representation (SCISWR) as a non-interacting part of a 
Hamiltonian and assume that 

H = uo + Hz(v) + H I ( v )  (21) 
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where H,(q)(= H - Hz(q)) is the remainder interaction of spin waves and the parameters 
J; and q will be determined self-consistently. However, q is always one and J; = J ,  
for an isotropic system in usual SWT. The H,(q) will be considered as a free part of 
the Hamiltonian and can be diagonalized by means of a Bogolubov transformation. The 
excitation energy of free spin waves in the representation of &(q)  is 

yk = ;(cosk,d +cosk,d) (24) 

where Jl is the renormalized parameter of interaction and d is the distance between the 
nearest-neighbour sites. If the self-consistent solution of q is not one, i t  means that the 
excitation of the renormalized spin wave in unrestricted Bose space is anisotropic. This 
representation is named the SCKWR. 

In the SCISWR, the averages (a:bg), (aft$), (a:.$,), (ap.zy), (bAb$) and (bgbg)  must 
be zero and 

(a:af)s = f(f - f') - pr.y 

n = (a fa j )n  t = (bib,), 

(25)  

(bfibg,)n = f@ - 9') - 247.d (26) 

(27) 

(a$bL), = = g(f  - 9) (28) 

The SCISWR can be chosen so that the first perturbation contribution of the remainder 
interaction. (H,(q)),,, is zero. In fact, such an approximation is equivalent to the following: 

Therefore, the approximation of independent spin wave representation is equivi i t  to 
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The above Hamiltonian describes the anisotropic independent spin waves and can be 
diagonalized by means of (U. V )  transformation. The anisotropic parameter q' can be 
determined by 

(33) 
[ (1 ? :)6;:8!!~)~ + (1 + qO(l d 4 ( 1  +3x)  - x ) 3  1 

I' vog(8) q'= [(1-i;(?+n)5 + 4  ( l + n ) y l  - x ) 3  

where 

qa = J I , / J ,  (34) 
x = g(J)'/(t +n)'. (35) 

We discuss the isotropic Heisenberg model where qo = 1. In conventional spin wave 
theory. the q in Hz(q) is set to one and the non-interacting representation is simplified. 
However, the excitation of the spin wave is still anisotropic (where q' x 0.8309) due 
to the remainder interaction including both the dynamics and kinematics. It means that 
the effective interaction along the Z direction is stronger than along the others and seems 
to imply the existence of symmetry breaking in the ground state. Our SCISWR is a self 
consistent independent spin wave ground state where the anisotropic parameter q must be 
given self-consistently by solving the fixed point of q* in equation (33), where the quantities 
(n, g(6), x )  are related to the value of q through the definitions of (27), (30) and (35). A 
stable fixed point q' % 0.86004 has been found by computer for 2D isotropic A M M  on a 
square lattice. n c 0.07398, g(6) % 0.14773 and the excitation energy of a spin wave in 
unrestricted Bose space is E:) = 0.61 lOJ,/- with yk = (cos k,d + cosk,d)/2. In 
our SCISWR it is clear that 

(q*lHi(q*)lq') = 0. (36) 

H = Uo + H2(7*) + Hr(q*). (37) 

E = ~ ( 1 7 * I ~ f S ~ I f ) / ( $ I ~ I ~ )  (38) 

Therefore, the Hamiltonian H is 

Following the scheme of approximation in [12], the ground-state energy is 

f 4 
where H f g  is the pair Hamiltonian of two nearest-neighbour lattices (f,g). lq*) is the 
ground state of Hz(q*) and If)  is the exact ground state of the system. 

As a first-order approximation, we neglect all correlations of sites (f, g) with others 
and the I f )  in  (38) is approximated by la*). The ground-state energy will be 

The calculation of equation (39) is similar to [14] and yields 
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Using the values of 11 % 0.073 98, g(6) % 0.14773 and x X 0.018 92 for ?D isotropic AFHM 
of square lattice. we have E 

For a further approximation, we need to calculate the corrections from the correlation 
between sites (f. g) and others. Now, the ground-state energy is 

-0.632JN. 

where the site f~ is the nearest-neighbour of g, g4 the next-nearest-neighbour of g. whereas 
X I ,  Ccz, 52 come from the corrections of nearest-neighbour correlation and C;, C;, R' 
from next-nearest-neighbour correlations. The term XI is from -(~*Ifi&9~,Iq*)~ and 

whereas Cp, 4, 52 and 52' are from (tl*lS~l~*)(tl*JS~~~~ltl*)~, (tl"lSjl~*)(~'JS~~~,l~*)~, 
(~*lS~S~0ff,lq'), and ( ~ * ~ S ~ S ~ C ~ ~ ~ I ~ * ) ~ ,  respectively, where (. . means the average taken 
from linked diagrams. Meanwhile, 

4 7  * lafbg - t  - t o  f,lq'),. The term Ci is from -(q'liif6g0g,lq*)c and -(q*lZ;b&,lq*)c, 

(tl'lefe,ef,ltl*) = (t l ' ie~t l - )~  + 2(~*iei t l * ) ( t l ' iefegi~*)~ + (tl*ieitl*)(tl*iefef,itl*)~ (42) 

and (q*l0feg6',,lq*) can be obtained similarly. 
analytically without any approximation. 

expansion theorem in the SCISWR, we obtain the ground-state energy 

All averages (...) can be calculated 

After the tedious calculation for all the terms in equation (38) by means of the Wick 

( H )  % (-0.6420 - 0.01562 - 0,001 53)NJ 
o -0.6592NJ (43) 

where -0.015 62 is from the nearest-neighbour correlations and -0.001 53 from next- 
nearest-neighbour correlations. The value is quite close to the numerical calculations 
-0.6692(8) [5,6]. If we perform more higher-order approximations, we must consider 
the higher-order perturbation as well as higher-order correlations. Although we cannot 
show that all corrections from interactions will be convergent, every term in the expansion 
of perturbation, however, has been convergent since there is a gap in the boson excitation 
energy, Meanwhile. if we perform the higher-order perturbation calculation, the ground-state 
wavefunction will be 

where Q is a projector operator to rule out the state Is'). There are infinite diagrams 
contributing to (OIHrlq) even for second-order perturbation since OUT Hamiltonian has 
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infinite terms in remainder interactions. Fortunately, each line in a diagram will carry a 
small factor n (e 0.07398) or g(S) (e 0,14773) and the lowest-order diagrams have at 
least four lines since we have used the SClSWR as a non-interaction representation. So, the 
term of higher-order perturbation could be expected to give higher-order contributions. The 
convergence of perturbation theory seems good. However, we cannot give a proof for the 
complete convergence of our perturbation series. 

Finally, we must point out that the excitation in the momentum space alIq*) is not a 
real physical excitation. Its gap favourably overcomes the divergence in the perturbation 
series and seems to improve convergence. The real spin excitation must be in the proper 
space. Therefore, we must study the real physical spin excitation in proper space which 
is defined by the state zl:l$) and find out whether it  has a gap or not. For the isotropic 
Heisenberg model, we have 

9 Q 

if we make some kind of approximation to reduce the first term on the right-hand side of 
(45) into 

where A and B are coefficients. A self-consistent approximation of an independent physical 
spin wave in proper space is an example of equation (46). but the approximation of equation 
(46) might be more general. Let us consider the following symmetry: 

In the same kind of approximation, the second term on the right-hand side of (45) will read 

Therefore, we obtain 

9 

It is reduced to the excitations without a gap. 
In summary, we have applied our complete Bose transformation to the 2D isotropic 

antiferromagnetic Heisenberg model on a square lattice. An SCISWR has been introduced as 
a non-interaction representation instead of the conventional free spin wave representation 
(CFSWR). In SCISWR, the remainder interaction will be zero at first-order perturbation, but not 
in CFSWR. Meanwhile, our calculation shows that the excitation of an unrestricted boson is 
anisotropic and has a small gap. The gap can help one to overcome the divergence problem 
in any term of higher-order perturbation. The approximate ground-state energy has been 
calculated in SCISWR and the value is -0.6592NJ, which is quite close to the numerical 
value (-0.6698N.l). It is not proven that the energy of an unrestricted Boson excitation has 
no gap after the complete renormalization of the remainding interaction. An explanation for 
the possibility of isotropic excitation without a gap has been given for a boson restricted in 
proper space, but it is not rigorous. 
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